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Abstract 

A detailed analytical study of the equations describing the fluorination of UO 2 particles is presented for some limiting 
cases assuming that the mass flowrate of these particles is so small that they do not affect the state of the gas. The analytical 
solutions obtained can be used for approximate estimates of the effect of fluorination on particle diameter and temperature 
but their major application, however, is probably in the verification of self-consistent numerical solutions. Computational 
results are presented and discussed for a self-consistent problem in which both the effects of gas on particles and particles on 
gas are accounted for. It has been shown that in the limiting cases for which analytical solutions have been obtained, the 
coincidence between numerical and analytical results is almost exact. This can be considered as a verification of both the 
analytical and numerical solutions. © 1997 Elsevier Science B.V. 

1. Introduction 

The chemical reaction of fluorine (F 2) and uranium dioxide (UO 2) leading to the production of uranium hexafluoride 
(UF 6) has been extensively studied for many years (see, for example, Yahata and Iwasaki [1], Iwasaki [2], Sakurai [3,4]). As 
a result, basic properties of this reaction (including temperature dependence) have been established experimentally, using 
UO 2 pellets (Iwasaki [2]) and UO 2 powder (Sakurai [3]). However, before the results of these authors could be used for 
optimising the technological process of UF 6 production, a number of questions need to be answered. These include such 
questions as: " H o w  does the temperatures of gas and UO 2 change during the reaction in an environment which is different 
from that used in the experiments of the above mentioned authors?", " H o w  does the mass of UO 2 powder or pellets change 
during the reaction in this environment?", " H o w  is the change in temperature of UO 2 powder or pellets related to the 

change in their mass?".  
These questions can be answered either by performing the relevant experiments or by means of a computer simulation of 

the heat and mass balance of chemically reacting UO 2 powder or pellets. The second approach is certainly less costly than 
the first. In fact the results of computer simulations would help in the optimizing of experimental setups. In some cases it 
appears to be very helpful to forecast the results of numerical simulations for some limiting cases by means of relatively 
simple analytical solutions. These solutions could enable us to determine the general properties of the phenomenon and they 
can be used to make an initial choice of parameters for computer simulations. 
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The aim of this paper is to present some of the analytical solutions of the basic conservation equations describing 
chemically reacting UO 2 particles (which would in a certain sense incorporate powder and pellets) and to compare these 
solutions with the results of numerical simulations. 

In Section 2 we describe the basic properties of the reaction between UO 2 and F2 as inferred from the experimental 
results reported by lwasaki [2] and Sakurai [3,4]. The basic equations and approximations used in our model are presented 
and discussed in Section 3. In Section 4 we present analytical solutions of these equations for some limiting cases. In Section 
5 these solutions are compared with the results of numerical solutions for some of these cases. The results of numerical 
simulations for a more realistic case are presented in Section 6. The main conclusions of the paper are summarized in 
Section 7. 

2. Chemical  reaction 

The fluorination of uranium dioxide can be subdivided into 2 main steps. Firstly 

UO2(solid) + F2(gas) --+ UO2F2(sufface) (2.1) 

(chemisorption of fluorine), secondly 

UO2F2(sufface) + 2F2(gas) ~ UFr(gas) + Oz(gas).  (2.2) 

In the case of UO 2 pellets, lwasaki [2] separates the process: 

UO2(pellets ) --, UO2(partly fluorinated powder) (2.3) 

which precedes the reaction (Eq. (2.1)) forming UO2F 2 powder. 
The combination of reactions Eqs. (2.1) and (2.2) is accompanied by a tree energy increase at the rate of 244.5 kcal /mol  

(Sakurai [3,4]). This free energy increase due to the chemical reaction is equal to the enthalpy of the reaction and the heat of 
reaction (Hre~) (see Ref. [5], pp. 31, 47). 

Processes Eqs. (2.3) and (2.2) are surface reactions which proceed at the interface between the pellet core and the 
intermediate layer (partly fluorinated UO2F 2 powder) and on the outside of this intermediate layer respectively, whereas 
process Eq. (2.1) proceeds throughout the intermediate layer. At temperatures below 430°C the rate of reaction Eq. (2.2) is 
negligible, so that the fluorination results in the production of UO2F 2 powder only. Above 430°C the rate of reaction Eq. 
(2.2) increases and the quantity of the intermediate UO2F 2 powder begins to reduce. We will restrict our analysis to 
temperatures above 430°C which allows us to reduce reactions Eqs. (2.1), (2.2) and (2.3) to a single surface reaction: 

UO~ + 3F 2 ~ UF~, + O 2 , H ...... = 244.5 kcal /mol  = 3.789 × 106 J / k g  (UO 2). (2.4) 

Rates of reaction Eq. (2.4) (k) measured in m m / h  and g/(cm- '  h) at different temperatures are shown in Table l based 
on experimental results by Iwasaki [2]. 

Based on the results presented in Table 1, lwasaki [2] drew attention to the tact that the temperature dependence of k at 
temperatures above about 450°C can be approximated as (see his fig. 8) 

( (mm))  473  
log,o 100k ---if- ~ T(K) +7.384.  (2.5) 

Eq. (2.5) is simply an analytical approximation of the line "B' in fig. 8 of lwasaki [2]. When deriving this equation we 
took into account that, for this line, 

l og l0 (100k(~m- )}  = 1.7 when 1 0 0 0 / T ( K ) =  1.20, 

(2.6) 
l o g m ( 1 0 0 k ( - ~ ) ) = 0 . 8  w h e n l 0 0 0 / T ( K ) =  1.39. 

Taking the density of UO 2 (Puo , )  equal to 10.53 g / c m  3, Eq. (2.5) can be rewritten as 

where a = 708.15 and b = 10907. 
Eq. (2.7) represents the well known Arrhenius law (see Kuo [5]). 
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Table 1 
Experimental reaction rate constants 
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Temperature (C) k (ram/h) k (g/cm 2 h) 

460 0.081 0.085 
480 0.104 0.109 
500 0.200 0.210 
520 0.278 0.292 
540 0.380 0.400 

Results presented in Table 1 on which Eq. (2.7) was based were obtained in the experiment when the partial pressure of 
F 2 was 152 mm Hg, i.e., the fluorine concentration was 20% by volume. For an arbitrary fluorine concentration this equation 
can be generalized to 

k( ~2 s ) = aP~2exp( -b /T(K)  ), (2 .8)  

where PF2 is the relative partial pressure (volume or mole fraction) of F 2, 

cr = 7917, b = 10907, y =  1.5. (2 .9)  

When deriving the value of 3/ we took into account the dependence of k on pF 2 as reported by Yahata and Iwasaki [1] 
(see their Table 3). This value is not particularly reliable and can vary from 1.3 to 2.0 depending on the value of PF2" The 
value of a is chosen in such a way that a(0 .2)  t5 = a = 708.15. 

3. Basic equations and approximations 

In this section we summarise the main new equations and approximations used in the numerical and analytical modelling 
of the fluorination of UO 2 particles. Approximations used in analytical modelling but relaxed in the general numerical 
modelling will be specified. 

Assuming that particles are perfect spheres, the mass conservation equation for them can be written as 

d m p _  k'rrD~, (3 .1)  
d t  

where mp is a particle's mass, Dp is the particle diameter and k is the reaction rate as defined by Eq. (2.8). 

set 
To simplify our analysis, we can assume that the particles do not affect the concentration of F 2 in the gas so that we can 

= ap~ 2 = const. (3 .2 )  

This assumption will be later relaxed when we consider a coupled self-consistent solution in Section 6. 
The small particle size allows us to assume that the temperature inside them is constant and equal to the temperature at 

where 

K = 2 &/Puo2" 

Eq. (3.3) means that the rate of change of a particle's diameter Dp is a function of Tp hut does not depend on Dp. 
The value of Tp in its turn can be obtained from the particle heat balance equation which we present in the form 

dTp=hcSp(T~ Tp) dmp mpcv d-~ - - - f h T n r e a c  + SPeP°(04 - T4)' (3 .4)  

the surface. As a result T in Eq. (2.8) can be assumed equal to Tp (particles' temperature). We assume that all particles are 
identical which allows us to restrict our analysis to one particle only. 

In view of these assumptions Eq. (3.1) can be simplified to 

d t  r exp - , (3 .3)  
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w h e r e  Cp is the particle's specific heat capacity, h c is the convective heat transfer coefficient, Sp is the surface area of the 
particle, T.~ is the gas temperature away from the particle, Hre~c is the heat of reaction, fh is the fraction of Hr~ac absorbed 
by particles, % is the particle's emissivity, ( r=  5.67051 × 10 s W / ( m  2 K 4) is the Stefan-Boltzmann constant, and O R is 

the so called radiation temperature (Pomraning and Foglesong [6]). 
h c in Eq. (3.4) can be defined as (Bird et al. [7]) 

h~ = hgNU/Dp, (3.5) 

where Ag is the thermal conductivity of surrounding gas away from the particle, Nu = 2.0 + 0.6Re~/2Pr 1/3 is the Nusselt 
number, Re D is the Reynolds number, and Pr is the Prandtl number. 

The Reynolds and Prandtl numbers are defined as (Landau and Lifshitz [8]) 

Re D = PgasUg~-particlelparticle - -  b/gas panicle/particle Pr = %~___L 

'0gas /]gas )(gas 

where pg~ is the gas density, Ugas_particle is the relative velocity between gas and particles, %,.~ is the dynamic viscosity, Uga~ 
is the kinematic viscosity, Xg,~ = Kg~.~/pg~Cp is thermometric conductivity (thermal diffusivity), and /pmid~ is the 

characteristic size of particles (/particle = Dp in the case of spheres). 
When deriving Eq. (3.4) we used the so called P -  1 model for the thermal radiation transfer which appears to be 

particularly convenient for quantitative analysis of radiation transfer between particles and surrounding gas (see Siegel and 

Howell [9]; Sazhin et al. [10]). 
Following our previous assumption that the influence of particles on gas is small we can assume that neither T,. nor O R 

change during the course of reaction. Also we assume that the relative velocity between the particles and the gas is so small 
that we can assume in our analytical work that Nu = 2 (or at least ignore the dependence of Re D o n  Dp, t, and To). To 
simplify the analysis Ag, c o and ep can also assumed to be constant. All these assumptions will be relaxed in self-consistent 
computations presented and discussed in Section 6. 

In view of Eqs. (3.1) and (3.5), Eq. (3.4) can be rearranged to 

3dTp ~ ( b ) +a3Op(O4-  T;) , (3.6) Op --~-t = a, Dp( T~ - Tp ) + a2 Off exp Tp 

where 

6AgNU 6fh H .... ~ 6eptr 
al a 2 -  ' u 3 -  - -  (3.7) 

t"p PUO~ " Cp PUO2 Cp DUO2 " 

The system of Eqs. (3.3) and (3.6) need to be solved numerically in general. In some limiting cases, however, analytical 
solutions of this system appear to be possible. These cases will be considered in Section 4. 

4. Analytical solutions 

If we know the time dependence of T o then the analytical solution of Eq. (3.3) appears to be straightforward. On the 
other hand the analytical solution of Eq. (3.6) with respect to Tp appears not to be obvious even if D o as a function of t is 
known. In what follows we will look for the solution of the system Eqs. (3.3) and (3.6) in the form Dp(Tp), which will 
predict the change of particles' sizes depending on their temperature. An analytical solution in this form appears to be 
possible in two limiting cases: one when the change in Tp is predominantly due to the thermal conduction in the gas (the first 
term on the right hand side of Eq. (3.6) is the dominant one); the other when change in Tp is predominantly due to the heat 
of reaction and thermal radiation (the last two terms on the right hand side of Eq. (3.6) are the dominant ones). These two 
limiting cases will be considered separately in Sections 4.1 and 4.2. 

4.1. Contributions of the heat of reaction and thermal radiation are small 

If the contribution of the heat of reaction and thermal radiation are small then we can ignore the contribution of the last 
two terms in the right hand side of Eq. (3.6) and simplify this equation to 

dTp _ a , ( r~ - Tp) (4.1) 

dt O~ 
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Dividing Eq. (4.1) by Eq. (3.3), we obtain 

exp 

The solution of Eq. (4.2) can be presented as 
I 

I 1- 
1 K [ j / r d x e x p ( - b x )  

D p  . . . . .  
D p o  a I J I / T p o  x 2 T ~  - x 

(4.2) 

(4.3) 

where Tp0 and Dpo are a particle's initial temperature and diameter. 
It is easy to see that in both cases when T~ > Tp and T~ < Tp we have D o < Dp0. The solution Eq. (4.3) fails when 

T~ = Tpo. In this case, however, the solution of Eqs. (3.3) and (4.1) is trivial: D o = const and Tp = const (no heat transfer 
takes place). 

Eq. (4.3) can be regarded as the required explicit analytical solution of the system of Eqs. (3.3) and (3.6). Unfortunately, 
however, the integral on the right hand side of Eq. (4.3) cannot be expressed in terms of elementary or known special 
functions. This presentation appears to be possible in two limiting cases: when the temperature of surrounding gas T~, is well 
above or well below the particle's temperature Tp. These are the most likely cases when the contribution of thermal 
conduction is particularly important. 

(a) T~ >> Tp. 
In this case Eq. (4.3) can be simplified to 

1 K f , / r  d x e x p ( - b x )  K f , / r p d x e x p ( - b x )  (4.4) 
Dp = - -  X 2 aiT 2 ~l/rp~ X 3 " Dpo alT~ ~ I /Too 

Remembering the definition of Ei(x): 

E i ( x ) _  fx expt  
- J _ ~  t dt when x < 0 ,  

Ei(x)=--E_~lim+0 J x t d t +  - - d t t  when x > 0 ,  

we can rearrange Eq. (4.4) to (see Gradstein and Ryzhik [1 l]) 

Dv . . . .  2a,T; ] k a,T~ 2a,T 2 2a,T 2 Too Dp 0 atT~ 2aIT 2 + 7 - - - - ~ 2 / e x p / -  - + - -  exp - - -  

bK b2e: ][Ei [ b 
- -  + - - E i  ( 4 . 6 )  
a,T~ 2a'T2 )1 ~ 

Note that in both cases, x < 0 and x > 0, Ei(x) can be expanded as 
~¢ X n 

Ei(x) = 3,+ lnlxl + E n ! '  (4.5') 
n = l  n "  

where 3' = 0.5772156 is the Euler constant. 
For large and positive x we can use the following asymptotic expansion (Gradstein and Ryzhik [10]) 

( k -  l ) !  
E i ( - x )  = e x p ( - x )  ~ ( - 1) ~ ~-k + R,,  (4.5") 

k = l  

where 

n! 
R n  < X n +  I " 

For most realistic values of temperature, we have b/Tp >> 1 which allows us to use just the first two terms in the 
expansion Eq. (4.5") and simplify Eq. (4.6) to 

[ lup 0 "~ K ( ( b )  --~-p ( b ) ) ]  I . -  Tp------ S (4.6 ')  Op= -N-+a,b-----~ T f f e x p - r 2 0 e x p  
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(b) T~ << Tp. 
This case (cooling of particles) is less realistic for practical applications but we will consider it for completeness of our 

analysis. Keeping only linear terms, Eq. (4.4) can be simplified to 

. 1 1 K__fl/Tpdxexp(-bx ) KT~ l/Tp 
Dp = + - + - - j ,  d xexp ( -bx )  (4.7) 

"1 Jl/Tpo -'¢ a I I/l'p~j ] 

In view of Eq. (4.5), Eq. (4.7) can be rearranged to 

' ---K [ E i [ -  b --~-p ~po D o= - - +  - -  - E i  - - - -  exp - e x p  - (4.8) 
Opo a l l  [ Tp ~ a,b 

Solutions Eqs. (4.6) and (4.8) can be used to obtain higher order solutions of Eq. (3.6) (taking into account the small 
contribution of the last two terms in the right hand side of Eq. (3.6)). These solutions, however, turned out to be too 
complicated for any practical applications. 

4.2. Contribution of thermal conduction is small 

If the contribution of thermal conduction is small then we can ignore the contribution of the first term in the right hand 
side of Eq. (3.6) and simplify this equation to 

dt - D 0 a2exp - + a 3 ( 0 4 -  Tp4 " (4.9) 

Dividing Eq. (4.9) by Eq. (3.3) we obtain 

dTp I [ 4 { ~ ) ]  
Z e x p -  . (4.10) dDo "2 4-",(0 4-  p) ro 

The solution of Eq. (4.10) can be presented as 

[ (I/Tp x 2 d x  ] 
Dp =/3~o exp/K/  , ] . (4.11) 

e [ Jl/T,,oa30~x4exp(bx)~Texp(bx) 4-a2x4 

Although Eq. (4.11 ) can be regarded as the required explicit solution of the system of Eqs. (3.3) and (3.6) in the limit of 
small thermal conductivity, some further simplifications of this equation are required in order that Dp(Tp) can be expressed 
in terms of elementary or known special functions. These simplifications are possible in three limiting cases when one of the 
terms in the denominator of the right hand side of Eq. (4.11 ) is dominant. 

(a) Contribution of the heat of reaction is small and the radiation from the gas dominates over the radiation from the 
particles (04 >> T4). 

In this case Eq. (4.11) can be simplified to 

[l/T"exp( Tbx)- dx ~7~S "I/TpeXp(-- 2bx)--7_ dx + ~ [,/rpexp(--bx) dx] .  (4.12) Dp ~ Op0  exp~ 
a30~ J,/rp,, ~ a~.~ , / r  .... x .3o~ J~/r0,, x ~ l 

Remembering Eq. (4.5) we can rearrange Eq. (4.12) to 

Do:Dpoexp{-a30---~R[Tpexp(-~)-TpoeXp( ~ ) ]  - ~ [ E i ( -  ~p ) - E i ( -  ~ 1 1  

Ka2 [ [ 
+ [r0exp t 

a308 exp -- 

exp( G, G b 
5 2O 

-~p) exp(2pbo)  ] 2Kba2[ ( 2_pb ) ( 2 ~ ) ] _  2b Tpo + ~  Ei  - - E i  

T;b T3b 2 Tpb 3 Tpb4]--b5 ( ~ p ) E i  - - - + - -  - - +  + 
20 60 120 120 5 !  

+ Tp3b2 T2°b3 Tp°b4]--b5 ( ~po)] } E i  - 
- -  - -  - -  4 -  

60 120 120 5!  
i (4.13) 
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Ignoring the contribution of quadratic terms with respect to 0R 4 we can simplify Eq. (4.13) to 

Dp=Dp0eX p -a3O--~R[Tpexp(-~p)-TpoeXp(- + ) ] - ~ [ E i ( - ~ p ) - E i ( _  TTb0)]}. (4.14) 

In the case when b << Tp we can use the asymptotic expansion Eq. (4.5") for Ei(x). Taking the first two terms in this 
expansion we can further simplify Eq. (4.14) to 

Dp = Dpo exp' a30~ b T2 exp( - ~p ) - T2o exp( - -~-p ) • (4.14') 

(b) Contribution of the heat of reaction is small and the radiation from the gas is dominated by the radiation fi'om the 
particles (04 << T4). 

This case (cooling of particles) is less important for practical applications but we will consider it for completeness of our 
analysis (cf. Section 4.1 .b). Keeping only linear terms, Eq. (4.11 ) can be simplified to 

[-- K--- fl/rpx2exp(--bx)dx-- K04 f _K__~ f } Dp=Op0exp ., l/Tpx6exp(-bx)dx- _l/T"x6expl -2bx)dx . 
a3 Jl/Tpo a 3 l/Too a~ al/Tpo 

(4.15) 

All integrals in the right hand side of Eq. (4.15) can be expressed in terms of elementary functions. As a result this 
equation can be rearranged to 

') ( ( ( Dp=DpoeXp - -~+b2Tpo+b,~2 exp -7q-+b2 + exp 

[6!K04 ( ,.., exp( - b/T_p)_ exp(-b/Tpo ) ) 
+ _ _  

b"+JT6-n(6-n), b"+tT6o"(6-n), a3 n=0 " • 

6!Ka2 ~ ( exp(-2b/Tp) 
+ a ~ - -  =o ~ (2b)n--WiTp 6 n ( 6 ~ n )  ! 

exp(-2b/Tp°) ) ]  

(2b)n+' T6 o n(6 - n)! 
(4.16) 

Keeping only the lowest order terms, Eq. (4.16) can be simplified to 

/[(  / (  )1} Dp=Dpoexp -aT -~+b2Tpo + ~ ]  ~ - ~-7+b2Tp + - - 2 - ~ 2 - -  t~ll; ]exp - T r - -  . (4.17) 

(c) Contribution of radiation is small. 
In this case Eq. (4.11) can be simplified to 

[ K(TP -- TP°) Ka304f,/Tpexp(bx)dx Ka___~3[l/Toexp(bx)dx ] 
Op=Dp°exp a 2 a~ J,/rpo x 2 + a2 j1/rro x6 . (4.18) 

In view of Eq. (4.5), Eq. (4.18) can be rearranged to 

DP = DP° exp( K(Tp-TP°)a 2 Ka304[a~ Tpo exp ( b ) ~  _ Tp exp( b 1 ] ~  Tp ] 

Ka304b b Ka 3 b T4b T3b 2 + T2b 3 + 
a2 Ei -~-p - E i  - a-~ exp + 20 + 60 120 120 

T40 b T3o b2 T2o b3 Tpo b4 ] b5 Ei(_.b_b / ] / bSEi( b l -exp[ b l[ T~° + + + + + . (4.19) 
5! ~Tp] ~Tpo][ 5 20 60 120 120 J 5! ~Tpo] 1) 



214 S.S. Sazhin, A.P. .leape.~'/ Jm~nud ~?[ Nuulear Materials 249 (1997) 207 222 

Taking the lowest order terms, Eq. (4.19) can be simplified to 

Dp = Dpo exp . (4 .20)  
a~ 

Eq. (4.20) means that in the absence of external sources of heat (thermal conduction or radiation) the size of particles 
decreases exponentially with increasing temperature. 

5. Numerical solutions (limiting cases) 

In this section we compare the results predicted by some simple analytical solutions presented in Section 4 with the 
corresponding results of the numerical analysis based on a CFD code where the general solution of Eqs. (3.3) and (3.6) has 
been implemented. This comparison will allow us to verify both our analytical and numerical solutions so that both these 
solutions could be applied with confidence to the analysis of more realistic cases. The limiting cases considered in this 
section involve heating UO2 particles under the influence of thermal conduction from surrounding gas (contributions of the 
heat of reaction and thermal radiation are small) (Section 5. l ), heating UO~ particles under the influence of thermal radiation 
(contributions of the heat of reaction and thermal conduction are small) (Section 5.2), and heating UO~ particles by the heal 
of reaction (effects of thermal conduction and thermal radiation are small) (Section 5.3). In the first two cases the particles 
are assumed to be so small that they do not affect the gas properties: in the third case gas properties are irrelevant, since gas 
is effectively isolated from particles. 

Values of parameters used for the computations in this section have been chosen so that we can provide a meaningful 
comparison between numerical and analytical results. These does not necessarily illustrate actual physical environments. 

5. I. Heating qf UO,_ particles uia thermal conductim~ /?ore thu surrounding gas 

The analytical solution for this case is given by Eq. (4.6) or its simplified version Eq. (4.6'). As follows from the 
derivation of these equations given in Section 4, the main assumption on which it is based is that the last two terms on the 
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Fig. 1. Plots of particle diameter (D v) versus particle temperature (7i~) as predicted by Eq. (4.6') (plot B) and obtained from numerical 
computations (plot A) on the basis that heating of UO, particles is achieved via thermal conduction from the surrounding gas. 
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Table 2 
Values of parameters used for comparison between analytical and numerical results 
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Parameter Value Units 

kg 0.004 w/(mK) 
Puo2 1.053 104 kg/m 3 
Pv2 0.5 Dimensionless 
fh 0.5 Dimensionless 
Nu 2 Dimensionless 
cp 330 J/(kg K) 
Dpo 5 X 10 -5 m 
T~ 3000 K 
Tpo 400 K 

right hand side of Eq. (3.6) can be ignored when compared with the first one. This can take place at relatively low particle 
temperatures Tp, when the reaction rate is small, and /o r  with small particle sizes. Also, the radiation temperature and /o r  
particle emissivity need to be small. 

Another condition which needs to be satisfied in order that Eqs. (4.6) and (4.6') are valid is T~ >> Tp. It does not seem 
easy to satisfy all these conditions simultaneously which means that the solutions Eqs. (4.6) and (4.6') might be of limited 
practical importance. To enable us to compare these solutions with the results of numerical computations over a relatively 
wide range of parameters we assumed that Hreac = % = 0 (which guarantees the validity of Eq. (4.1)) and used the data 
shown in Table 2 (which guarantees the validity of the conditions: T~ >> Tp and b >> Tp; the latter condition allows us to 
restrict our comparison to Eq. (4.6')). Plots of particle diameter (Dp) versus particle temperature (T o) as predicted by Eq. 
(4.6') and obtained from numerical computations are shown in Fig. 1. As follows from this figure, the curves coincide with 
an error of not more than 0.5% which could be attributed to the approximate nature of Eq. (4.6'). The close agreement 
between the curves endorses both the analytical and numerical approaches to the problem. 

5.2. Heating of UO 2 particles via thermal radiation from the surrounding gas 

The analytical solution for this case is given by Eq. (4.13) or its simplified versions Eqs. (4.14) and (4.14'). Two main 
conditions need to be satisfied in order that this solution can be justified. Firstly, the first two terms in the right hand side of 

k Dlometer 
(N] (M] 

B Dl~ter 
(k) (M) 

4.880E - 0 5 ~  + 
4.000E+02 8.000E+02 8.000E+02 I.O00E+03 1.200E+03 1.400E+03 

TEMPERATURE [K] 

Fig. 2. Plots of particle diameter (D 0) versus particle temperature (Tp) as predicted by Eq. (4.14') (plot B) and obtained from numerical 
computations (plot A) on the basis that heating of UO 2 particles is achieved via thermal radiation from the surrounding gas. 
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Fig. 3. Plots of particle diameter (Dp) versus particle's temperature (Tp) as predicted by Eq. (4.14') (plot B) and obtained from numerical 
computations (plot A) on the basis that heating of UO 2 particles is achieved via the fluorination process. 

Eq. (3.6) need to be much smaller than the third one. Secondly, the radiation temperature needs to be reasonably larger than 
the particle temperature so that 0~ >> T~ 4. Both these conditions are satisfied by the data shown in Table 2, ep = 1 and 
O R = 2000 K. Indeed, for T~, = Tpo = 400 K the first term in the right hand side of Eq. (3.6) is equal to = 10 - t °  m 3 K / s ,  
the second term is equal to = 7 × 10 ~ m 3 K / s ,  the third one is equal to = 1.6 × 10 - s  m 3 K / s .  If T~, increases to 700 K 
the first term would decrease, the third remains practically unchanged (decreases by about 4%), while the second would 
increase to = 10 s m ~ K / s  with its value approaching the radiation term. Therefore this approximation can be applied in 
the range of Tp below 700 K. In order to compare the analytical and numerical results over a wider range of parameters 
(Tp > 700) K we assumed in our numerical computations that H,.,~,, --- 0, as was done in Section 5.1. Also we will restrict our 
comparison to Eq. (4.14') only. The predictions of this equation are expected to be close to the predictions of Eqs. (4.13) and 
(4.14). 

Plots of particle diameter (Dp) versus particle temperature (Tp) as predicted by Eq. (4.14') and obtained from numerical 
computations are presented in Fig. 2 for data shown in Table 2 with e v = 1 and O R = 2000 K. The discrepancy between the 
curves does not exceed 0.5% which can be attributed to the approximate nature of Eq. (4.14'). As in the case of Fig. 1, the 
close agreement between the curves endorses both approaches to the problem. 

.5.3. Heating (?f UO: particles l,ia the .fluorination proces.~ 

The analytical solution for this case is given by Eq. (4.20). This case can be realized when the physical and radiation 
temperatures of the surrounding gas are close to the particle temperature, or when both the gas thermal conductivity and 
particle emissivity are small. We used the following data: Dp~ = 10-4 m, H , ~  - 3.789 X l0  6 J / k g ( U O  2) (see Section 2). 
fh = 0.5, cp(UO 2) - 330 J / ( k g  X K), Ag = ~p = 0. The numerical versus analytical (based on Eq. (4.20)) plots of  Dp versus 
T v are shown in Fig. 3. The plots practically coincide which supports both the analytical and numerical approaches to the 
problem. 

6. A self-consistent numerical solution 

Results presented in the previous section refer to some relatively simple cases when we were able to compare numerical 
results with analytical solutions. The main assumption which we made was that the particles do not influence the gas flow 
parameters. Although those results were very important for the verification of our code, they seem to be of limited practical 
interest. 
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In this section we present a self-consistent solution to the problem, when the effects of both the gas flow on particles and 
particles on the gas flow are accounted for. The gas flow was treated as turbulent, and the k-~  turbulence model was used. 
Particle trajectories were calculated using mean tracks. The temperature of the wall was assumed constant and equal to 350 
K. 

6.1. Input parameters 

The reaction takes place in a cylinder 5 m long with a radius of 0.1016 m. A mixture of UO 2 particles, F 2 and Ar is 
blown into the cylinder from one end and products of reaction (UF 6 and 0 2) along with Ar and possible remnants of F 2 are 
blown out of the tube from the other end. 

The mass flowrate of UO 2 particles is assumed 5.672 tonnes/day, which corresponds to 

Mf(UO2) = 0.0656 k g / s .  (6.1) 

We approximate the continuous flow of particles by the injection of these particles from 5 injection locations at the 
following radii: 

r I = 0.01 m, r 2 = 0.03 m, r 3 = 0.05 m, r 4 = 0.07 m, r 5 = 0.09 m. (6.2) 

The mass flowrates of the particles injected from these locations are taken equal to 

Mf,(UO2) = 0.0025 k g / s ,  Mf2(UO2) = 0.0076 k g / s ,  Mf3(UO2) = 0.0127 kg / s ,  

Mf4(UO2) = 0.0178 kg / s ,  Mfs(UO2) = 0.0249 kg / s .  (6.3) 

These mass flowrates are chosen in such a way as to give 

5 

E Mfi(UO2) = 0.0655 k g / s  (6.4) 
i:=1 

(close to the value in Eq. (6.1)) and 

Mri(UO2) a ~r[(r  i + 0.01 m) 2 - ( r  i - 0.01 m) 2] (6.5) 

(mass flowrate is proportional to the corresponding fraction of the inlet area). 
Remembering that the molecular weight of UO 2 is equal to 

kg 
M ( U O  2) = 270 kg m o l '  (6.6) 

we obtain from Eq. (6.4) the mole flowrate of UOz: 

0.0655 kg tool kg mol 
2.426 × 10 -4 (6.7) 

M ° f ( U O 2 )  270 s s 

In view of Eqs. (2.4) and (6.6) we obtain the mole flowrate of F 2 required to provide the full burnout of UO2: 

kg mol 
Mof(F2)  = 3Mof(UO2) = 7.278 × 10 -4 (6.8) 

S 

The inlet mole fractions of F 2 and Ar are taken equal to 0.9 and 0.1 respectively. This means that the mass fractions of 
these gases at the inlet are equal to 

0.9M(F2) 
MF(F2) = 0.9M(F~) + 0 .1M(Ar)  = 0.895, (6.9) 

MF(Ar ) = 0.105 (6,10) 

and are practically unaffected by the presence of particles. 
Firstly we assumed that the gas temperature at the inlet is equal to the room temperature, i.e., 293 K. The results of our 

computations in this case turned out to be negative in the sense that the reaction could not properly develop. Non-reacting 
particles with temperatures under 350 K escaped through the outlet. The reaction might eventually have developed but only 
after executing many more iterations and particle tracking calculations. An alternative explanation is that local fluctuations 
of temperature were not accounted for in our computations. Such fluctuations may trigger the reaction. 
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Table 3 
The piecewise linear fit for C v of UO, 

Temperature (K) Specific heat (J/tool K) Specific heat (J/kg K) 

300 65 240.7 
400 70 259.3 
600 78 288.9 
700 82 303.7 

1000 84 311.1 
1400 85 314.8 
1600 86 318.5 
2000 100 370.4 
2400 120 444.4 
2670 167 618.5 
3000 167 618.5 

In order to illustrate the performance of our code we consider another extreme case when the gas enters the enclosure at a 
higher temperature equal to 800 K, so as to provide favourable conditions for triggering the reaction. 

Assuming that the total gas pressure PT is equal to I atmosphere and the gas temperature T = 800 K, we can obtain from 
Eqs. (6.7) and (6.8) the value of gas velocity necessary to provide the required mole flowrate of F,: 

Mor(F2)NAkBT 
c o - ( 6 . 1 1 )  

0.9pTS 

where 

pT = 1.013 × 10" N / m  ~, kB(Boltzmann c o n s t a n t ) =  t.381 x 10 ~'3 J/K,  T(Initial particles t empera tu re )=  800 K, 

NA(Avogadro number) ~ 6.02 × 102~' molecules /kg  tool, S(area of the inlet) = 0.0324 m-'. (6,12)  

Having substituted Eqs. (6.8) and (6.12) into Eq. (6.11 we obtain 

1.803 X 103 
= = 1.638 m / s .  (6 .13)  

r° 0.9117 × 3.24 × 10 ~ 

We assume that the particles at the inlet have the same initial velocity. 
The value of specific heat Cp has been approximated by a piecewise linear function based on results reported by Fink 

[12] and Gotta and Philipponneau [13]. The piecewise linear fit for Cp of UO,  is presented in Table 3. 
The value of the gas specific heat was considered to be composition dependent with Cp(Ar)=  5 ca l /mo l  K = 523 

J / k g  K; Cp(F 2) = 9 ca l /mol  K = 991 J / k g  K (see Kuo [5]). The value of Cp for fictitious gas UF60 2 was computed from 
the equation 

C (  J ) C p ( O z ) J / k g m o l K + C p ( U F ~ ) J / k g m o l K  3 2 0 0 0 + 1 5 0 0 0 0  

P ~gK = M ( O : ) k g / k g m o l + M ( U F 6 ) k g / k g m o l  3 2 + 3 5 2  = 4 7 4 ( J / k g K ) .  (6.14)  

As mentioned in Section 2, there are no experimental data for the reaction rate at temperatures above 800 K. This leaves 
us some freedom in extrapolating the reaction rate in this temperature range. We assume that the reaction rate determined by 
Eq. (2.8) is valid in the temperature range up to T~p and remains constant at higher temperatures. In fact we can expect that 
at temperatures approaching 2000 K the reaction rate decreases due to dissociation of UF 6 molecules (see Tumanov and 
Tsirel 'nikov [14])). We cannot, however, quantify either the rate of this decrease or the temperature when the reaction rate 
reaches its maximum at the moment. 

6.2. Results of computations 

Firstly we present the results of the computations for the case when the contribution of particles can be ignored (Section 
6.2.1 ). Then we present the results of our self-consistent solution, assuming that the initial particle diameter Dp0 is equal to 
5 x 10 _5 m (Section 6.2.2). 

6.2.1. Contribution qf particles is ignored 
Since the contribution of particles was ignored, the problem reduces to a calculation involving only a mixture of Ar and 

F 2. From our computations follows the expected result that the mass fractions of these gases remain constant. In Fig. 4 we 
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Fig. 4. Plots of temperature versus distance along the pipe on the assumption that the contribution of particles can be ignored. Plot A refers 
to the centre of the pipe while plot B refers the near wall area. 

presented the plot of temperature versus distance near the centre line (curve A) and near the walt (curve B). As follows from 
this figure, the temperature drops more quickly near the walls than at the centre line. This result could be expected as heat is 
gradually removed through the walls of the enclosure. The same plots but for the parallel gas velocity show the slight 
increase of this velocity near the centre line follows from the conservation of mass flowrate and the reduction in parallel 
velocity near the wall. 

6.2.2. Flow with particles 

The plots of mass fractions for the four gases Ar, F2, UF 6 and 0 2 versus distance are shown in Fig. 5. As can be seen 
from this figure, the mass fraction of F 2 drops from 90% to almost zero at the distance near 1 m, which is consistent with the 
fact that all the uranium dioxide has fully reacted inside the enclosure. The mass fractions of UF 6 and O 2 (products of 
reaction) on the other hand increase from zero to just  below 90% and 10% respectively. The mass fraction of Ar decreases 
from about 10% to less than 5% due to the increased contribution of UF 6 and 0 2. As can be seen from this figure, the 
reaction takes place in a very localized part of the enclosure, rather than in the whole enclosure. This can be understood at a 
qualitative level: the reaction is accompanied by a considerable release of heat and this heat in its turn accelerates the 
reaction (see Eq. (2.7)). 

This explanation is confirmed by the plots of gas temperature versus distance as shown in Fig. 6 for the region near the 
centre line and near the wall. As can be seen from this figure, at distances close to 1 m this temperature increases very 
quickly due to the heat released in the process of reaction. For larger distances this temperature drops gradually due to the 
removal of heat through the walls (cf. Fig. 4). 

In Fig. 7 we present plots of the distance reached by the particle at a given time versus time. Most plots terminate at the 
distance near 1 m, where all the particles except those in the immediate vicinity of the walls have been converted to gaseous 
products. This distance corresponds to that where the concentration of UF 6 and O 2 (products of reaction) increases sharply as 
shown in Fig. 5. 

In Fig. 8 we present plots of particle diameter versus time for five different injections. In all cases particle diameters 
decrease sharply over very short periods of time, which is consistent with the vigorous nature of the reaction as discussed 
earlier. In the case of particles in the immediate vicinity of the walls we observe a slow down of the reaction in spite of high 
temperatures. This is explained by the depletion of concentration of F 2 in this region. The turbulent diffusion of F 2 from 
other areas of the domain is reflected in the erratic behaviour of particles' diameter with time. 
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Fig. 5. Plots of mass fractions of At, IG, UF~ and ()~ versus distance along the pipe on the assumption that the initial particle diameter Dp0 
is equal Io 5 × 10 ~ m. 

Note that the particle temperature is very close to the gas temperature as expected. The corresponding plots of 

temperature versus time have not been reproduced. 

In the case when particles' diameter is reduced to /)po = 5 x ]0 ~' Ill the reaction takes place at distances close to zero, 
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Fig. 6. Plots of gas temperature versus distance along the pipe near the axis (curve A) and near the wall (curve B) on the assumption that the 
initial particle diameter Dj~ is equal to 5 X 10 -5 m. 
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Fig. 8. Particle diameters versus time for five injections on the assumption that the initial particle diameter Dop is equal to 5 × 10 -5 m. 

which is rather different  f rom the case shown in Fig. 8. This reflects the fact that smaller particles have a larger surface area 
per  unit volume, which  creates bet ter  condit ions for a rapid surface reaction. 

7. Conclusions 

A detai led analytical study of  the equations describing the fluorination of  UO 2 particles is presented for some limiting 
cases. The analytical solutions obtained can be used for approximate est imates o f  the effect  o f  fluorination on particle 
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diameter  and temperature provided that the mass flowrate of  these particles is so small that they do not affect the state of  the 
gas. Their major application, however,  is probably in the verification of  self-consistent numerical solutions. 

It has been shown that in the limiting cases for which analytical solutions have been derived, the coincidence between 
numerical and analytical results is almost exact. This can be considered as a verification test for both these solutions. 

Computational results are presented and discussed for a self-consistent problem in which both the effects of  gas on 
particles and particles on gas are accounted for. 
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